If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+240x-1600=0
a = 1; b = 240; c = -1600;
Δ = b2-4ac
Δ = 2402-4·1·(-1600)
Δ = 64000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64000}=\sqrt{6400*10}=\sqrt{6400}*\sqrt{10}=80\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-80\sqrt{10}}{2*1}=\frac{-240-80\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+80\sqrt{10}}{2*1}=\frac{-240+80\sqrt{10}}{2} $
| 2x+x+5=32 | | (X-2)2(3-x)=1 | | -15/y=-38 | | 30=2x-7x | | 9x+15+3x=7 | | 3=n+5/2+11/2 | | 21.5=5p+1 | | 3x+5=3(5x+1) | | (x+3)-2(x-3)=2x-3 | | X+2=5m | | (12*x)/20=(1.5*4)/2 | | (2m-1)^2=49 | | X^2-2x+x^2=24 | | 4=4-4x+4x | | 1/3(6x+12)=10 | | 12x/20=4 | | 9-x/5=4 | | -5(a-4)=-3(a+2) | | 9x-8+3x+6=142 | | 3/12x-1=4/5x+6 | | (3/2)x-1=(4/5)x+6 | | 2(3x-5)+(x)=38 | | 2(3-4b)-5(2b+3)=b-17 | | (3y+5)=3(5y+1/3) | | 1-4n+5n=2 | | 11x-6=7x+14 | | 4(2s+3)=5(s-6) | | -3x-3=4x+39 | | 3(x+4)-2(1-x)-x-15=14x+45 | | 3/4(x-2)=1/2x | | 29x-10(x)=-18(x)+91 | | -20+5x=-5(8x+4) |